Reference Point-Based Particle Swarm Optimization Using a Steady-State Approach
نویسندگان
چکیده
Conventional multi-objective Particle Swarm Optimization (PSO) algorithms aim to find a representative set of Pareto-optimal solutions from which the user may choose preferred solutions. For this purpose, most multi-objective PSO algorithms employ computationally expensive comparison procedures such as non-dominated sorting. The crucial task of choosing a single preferred solution from the obtained Pareto-optimal solution set can be difficult for the user, especially when the number of objectives is large. We address these two issues and suggest a PSO algorithm, Reference point-based PSO using a SteadyState approach (RPSO-SS), that finds a preferred set of solutions near user-provided reference points, instead of the entire set of Pareto-optimal solutions. RPSO-SS reduces the high computational effort of the non-dominated sorting procedure by using simple replacement strategies within a steady-state environment. The efficacy of RPSO-SS in finding desired regions of solutions is illustrated using some well-known two and threeobjective test problems. Moreover, the performance of RPSO-SS is benchmarked using a hypervolume-based measure.
منابع مشابه
Load Frequency Control in Power Systems Using Improved Particle Swarm Optimization Algorithm
The purpose of load frequency control is to reduce transient oscillation frequencies than its nominal valueand achieve zero steady-state error for it.A common technique used in real applications is to use theproportional integral controller (PI). But this controller has a longer settling time and a lot of Extramutation in output response of system so it required that the parameters be adjusted ...
متن کاملAN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION
This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...
متن کاملOptimization of the Lyapunov Based Nonlinear Controller Parameters in a Single-Phase Grid-Connected Inverter
In this paper, optimization of the backstepping controller parameters in a grid-connected single-phase inverter is studied using Imperialist competitive algorithm (ICA), Genetic Algorithm (GA) and Particle swarm optimization (PSO) algorithm. The controller is developed for the system based on state-space averaged model. By selection of a suitable Lyapunov function, stability of the proposed con...
متن کاملRELIABILITY-BASED DESIGN OPTIMIZATION OF COMPLEX FUNCTIONS USING SELF-ADAPTIVE PARTICLE SWARM OPTIMIZATION METHOD
A Reliability-Based Design Optimization (RBDO) framework is presented that accounts for stochastic variations in structural parameters and operating conditions. The reliability index calculation is itself an iterative process, potentially employing an optimization technique to find the shortest distance from the origin to the limit-state boundary in a standard normal space. Monte Carlo simulati...
متن کاملAn efficient approach for availability analysis through fuzzy differential equations and particle swarm optimization
This article formulates a new technique for behavior analysis of systems through fuzzy Kolmogorov's differential equations and Particle Swarm Optimization. For handling the uncertainty in data, differential equations have been formulated by Markov modeling of system in fuzzy environment. First solution of these derived fuzzy Kolmogorov's differential equations has been found by Runge-Kutta four...
متن کامل